Numerical fluid dynamics for FRG flow equations: Zero-dimensional QFTs as numerical test cases

Introduction

A natural approach to test the applicability of a method is to study problems with exact reference solutions. The calculation of correlation functions of $QFTs$ in $0 + 0$ spacetime dimensions reduces to the calculation of ordinary integrals, which can be evaluated to extremely high precision, providing excellent reference values. Consequently, $(0 + 0)$ -dimensional QFTs are perfectly suited as testing grounds for (non-)perturbative methods and numerical tools in QFT. Furthermore, they can provide a low-level introduction to novel methods for non-experts or students.

In our work, we use the $(0 + 0)$ -dimensional $O(N)$ -model to demonstrate the analogy between FRG-flow equations and non-relativistic classical fluid dynamics. We apply methods from numerical fluid dynamics to FRG-flow equations and test the precision of these methods against exact solutions. Leveraging this framework we study different aspects of RG flows in zero dimensions including truncations, irreversibility and RG-consistency. Most of our findings can be generalized to QFTs in higher dimensions.

In the Wetterich-Ellwanger-Morris formulation the Renormalization Group (RG) flow of the $O(N)$ model is described by the exact RG equation,

where $\vec{\varphi} = (\sigma, \vec{\pi})$ denotes the $O(N)$ -vector of pions and the radial sigma mode. In $0 + 0$ spacetime dimensions the ERG equation is exact (no truncation needed) and the most general effective average action is given by a scale dependent local potential $\bar{\Gamma}_t[\vec{\varphi}] = U(t, \vec{\varphi})$. The corresponding exact partial differential equation reads

The above flow equation can be reformulated as a non-linear partial differential equation in RG time t and field space σ for its derivative $u(t, \sigma) =$ $\partial_{\sigma}U(t,\sigma)$. This PDE is an **advection-diffusion equation** [\[3,](#page-0-1) [1\]](#page-0-2), where the field space $x \equiv \sigma$ plays the role of an effective spatial domain,

> $\partial_t u(t,x) + \partial_x F[t,x,u(t,x)] = \partial_x Q[t,\partial_x u(t,x)]\,,$ $\vec{\pi} \sim \text{advection}$ $\sigma \sim$ diffusion

$$
\langle (\vec{\phi}^2)^n \rangle = \frac{2^n \int_0^\infty d\rho \, \rho^{\frac{(N-2)}{2}} \rho^n e^{-U(\rho)}}{\int_0^\infty d\rho \, \rho^{\frac{(N-2)}{2}} e^{-U(\rho)}}, \qquad \rho = \frac{1}{2} \vec{\phi}^2,
$$

with the $O(N)$ invariant ρ and self-interaction potential $U(\rho)$. All nonvanishing 1PI-correlation functions $\Gamma^{(2n)}$ can be expressed in terms of $\langle (\vec{\phi}^2)^m \rangle$ with $0 \leq m \leq n$, *cf.* Ref. [\[4\]](#page-0-0).

FRG and numerical fluid dynamics

The RG flow eq. of the zero-dimensional $O(N)$ model

,

 $\partial_t \bar{\Gamma}_t[\vec\varphi] = \mathrm{tr}\Bigl[\bigl(\tfrac{1}{2}$ $\frac{1}{2} \, \partial_t R_t \big) \, \big(\bar{\Gamma}_t^{(2)}$ $\left[\begin{matrix} (2) \\ t \end{matrix}\right]$ $\left[\begin{matrix} \vec{\varphi} \end{matrix}\right]$ + R_t)⁻¹]

Numerical methods for flow equations

Figure 3: Relative errors of $\Gamma^{(2n)}$ in the IR for $n = 1, 2, 3$ and $O(N = 4)$, which were calculated via the RG flow of the FRG Taylor (vertex) expansion to order $m = 2n$ _{trunc}. As initial condition we use the same ϕ^4 -potential as in Fig. 1 with negative mass term (left panel) or positive mass term (right panel).

The formulation of FRG flow equations as advection diffusion equations naturally leads to a notion of (numerical) entropy directly related to irre-versibility of RG flows [\[1\]](#page-0-2).

Finite vs. infinite N shocks and rarefaction waves in RG flows

A study of the $O(N)$ model within the FRG setup reveals fundamental qualitative differences between RG flows at finite and infinite N. The absence of diffusive contributions at infinite N allows for **non-smooth** and **non**convex rescaled potentials in the IR, which is a violation of the Mermin-Wagner theorem. The underlying dynamics of the RG flow can be understood using established concepts for non-linear advection equations like the notions of shocks and rarefaction waves [\[3,](#page-0-1) [1\]](#page-0-2).

The formulation as a conservation equation strongly suggests the use of established discretization schemes from numerical fluid dynamics for the numerical solution. For its robustness and relative simplicity we decided to use a finite volume method – the Kurganov-Tadmor central scheme [\[2\]](#page-0-3).

Figure 2: The plots show the relative errors of selected 1PI-correlation functions $\Gamma^{(2n)}$ in the IR for the $O(N = 4)$ -model with the quartic potential and negative mass term from Fig. [1](#page-0-4) over spatial resolution Δx (left panel) and UV inital scale Λ (right panel).

The FRG Taylor expansion

Zero-dimensional models can be used to test truncation schemes in FRG. A common truncation scheme for the effective potential is the Taylor/vertex expansion,

$$
\bar{\Gamma}_t[\varrho] = \sum_{n=0}^m \frac{\bar{\Gamma}^{(2n)}(t)}{(2n-1)!!} \frac{\varrho^n}{n!} \, . \qquad \qquad \varrho \equiv \frac{1}{2} \, \vec{\varphi}^2 \, ,
$$

where the RG flow is calculated on a finite set of m ODEs for the vertices $\overline{\Gamma}^{(2n)}(t)$. For the zero dimensional $O(N)$ model the applicability of the FRG Taylor/vertex expansion of the potential is very limited: it is not applicable to non-analytic potentials and fails to converge for non-convex analytic UV potentials, *e.g.*, ϕ^4 and ϕ^6 potentials.

FRANKFURT AM MAIN

The zero-dimensional $O(N)$ model

We study a zero-dimensional QFT of N real scalars with expectation values

Entropy production and irreversibility of RG flows

Figure 4: The plots show the RG flow of the effective potential $U(t, \sigma)$ (left panel) and the corresponding entropy production (right panel) for the zero-dimensional $O(N = 1)$ -model for a ϕ^4 -potential with negative mass term.

Figure 5: The plots show RG flows of the derivative $v(t, x) \equiv \partial_x V(t, x)$ of a rescaled **Figure 5:** The plots show RG flows of the derivative $v(t, x) \equiv O_x V(t, x)$ of a rescaled $(x \mapsto x/\sqrt{N}$ and $U(t, x) \mapsto V(t, x) \equiv U(t, x)/\sqrt{N}$) potential $V(t, x)$ for a family of specific piecewise quadratic UV initial conditions $V(t = 0, x)$. At infinite N (left panel) small changes of the UV initial condition lead to distinct results in the IR due to interactions of shock and rarefaction waves. At finite $N = 32$ (right panel) diffusive contributions of the σ-mode lead to a qualitatively distinct dynamic compared to the flow in the limit $N \to \infty$.

Summary

- RG flows in the LPA are advection-diffusion(-sink) equations.
- RG flows produce (numerical) entropy directly related to the irreversibility of RG transformations, which is hard coded in the diffusive character of the flow equations.
- RG flows can involve shock and rarefaction waves especially at large or infinite N.
- The non-linear diffusion in field space stemming from the radial σ -mode is essential to obtain convex potentials in the IR.

Friedrich Naumann FÜR DIE FREIHEIT

Adrian Koenigstein, koenigstein@itp.uni-frankfurt.de *Institut für Theoretische Physik*

Goethe-Universität Frankfurt a. M.

Martin J. Steil [msteil@theorie.ikp.physik.tu](mailto:msteil@theorie.ikp.physik.tu-darmstadt.de)[darmstadt.de](mailto:msteil@theorie.ikp.physik.tu-darmstadt.de)

Institut für Kernphysik Technische Universität Darmstadt

in collaboration with:

where $r(t) = \Lambda e^{-t}$ denotes the regulator with the UV initial scale Λ and $t \in [0, \infty)$ positive RG time (note the sign convention).

[Nicolas Wink,](https://inspirehep.net/authors/1657029?ui-citation-summary=true) wink@thphys.uni-heidelberg.de [Eduardo Grossi,](https://inspirehep.net/authors/1274573?ui-citation-summary=true) eduardo.grossi@stonybrook.edu [Jens Braun,](https://theorie.ikp.physik.tu-darmstadt.de/fermions/people_braun.html) jens.braun@physik.tu-darmstadt.de [Michael Buballa,](https://theorie.ikp.physik.tu-darmstadt.de/nhq/people_buballa.html) [michael.buballa@physik.tu](mailto:michael.buballa@physik.tu-darmstadt.de)[darmstadt.de](mailto:michael.buballa@physik.tu-darmstadt.de) [Dirk H. Rischke](https://www.uni-frankfurt.de/65315388/AG-Rischke) drischke@th.physik.uni-frankfurt.de

The authors of the poster are supported by the *[Deutsche Forschungsgemeinschaft](https://www.dfg.de/)* (DFG, [German Research Foundation\)–](https://www.dfg.de/) [project num](https://itp.uni-frankfurt.de/~strongmatter/)[ber 315477589 - TRR 211,](https://itp.uni-frankfurt.de/~strongmatter/) as well as the *[Friedrich-Naumann-Foundation for Freedom](https://www.freiheit.org/)*, the *[Helmholtz Graduate School for Hadron](https://hgs-hire.de/) [and Ion Research](https://hgs-hire.de/)*, and the *[Giersch Founda](http://www.stiftung-giersch.de/)[tion](http://www.stiftung-giersch.de/)*.

Figure 1: The plots show the RG flow of the effective potential $U(t, \sigma)$ (upper panels) and its derivative $u(t, \sigma) = \partial_{\sigma} U(t, \sigma)$ (lower panels) for the zero-dimensional $O(N = 4)$ model. In the left column we study the flow of a ϕ^6 -potential with a local minimum in the UV. In the right column we consider a ϕ^4 model with a negative mass term.

References

- [1] A. Koenigstein, M. J. Steil, N. Wink, E. Grossi, J. Braun, M. Buballa, D. H. Rischke, "Numerical fluid dynamics for FRG flow equations: Zero-dimensional QFTs as numerical test cases – Part I & II & III", [in preparation.](https://itp.uni-frankfurt.de/~koenigstein/subpages/research.php)
- [2] A. Kurganov and E. Tadmor, "New High-Resolution Central Schemes for Nonlinear Conservation Laws and Convection–Diffusion Equations", [J. Comput. Phys. 160, 241 – 282](https://doi.org/10.1006/jcph.2000.6459) (2000) .
- [3] E. Grossi, N. Wink, "Resolving phase transitions with Discontinuous Galerkin methods", [arXiv:1903.09503, \(2019\).](https://arxiv.org/abs/1903.09503)
- [4] J. Keitel and L. Bartosch, "The Zero-dimensional $O(N)$ vector model as a benchmark for perturbation theory, the large- N expansion and the functional renormalization group" [J. Phys.](https://iopscience.iop.org/article/10.1088/1751-8113/45/10/105401) [A45, 105401 \(2012\),](https://iopscience.iop.org/article/10.1088/1751-8113/45/10/105401) [arXiv:1109.3013.](https://arxiv.org/abs/1109.3013)