
Numerical fluid dynamics for FRG flow equations:
Zero-dimensional QFTs as numerical test cases

Introduction
A natural approach to test the applicability of a method is to study problems
with exact reference solutions. The calculation of correlation functions of
QFTs in 0 + 0 spacetime dimensions reduces to the calculation of ordinary
integrals, which can be evaluated to extremely high precision, providing
excellent reference values. Consequently, (0 + 0)-dimensional QFTs are
perfectly suited as testing grounds for (non-)perturbative methods and nu-
merical tools in QFT. Furthermore, they can provide a low-level introduc-
tion to novel methods for non-experts or students.

In our work, we use the (0 + 0)-dimensional O(N)-model to demonstrate
the analogy between FRG-flow equations and non-relativistic classical fluid
dynamics. We apply methods from numerical fluid dynamics to FRG-flow
equations and test the precision of these methods against exact solutions.
Leveraging this framework we study different aspects of RG flows in zero
dimensions including truncations, irreversibility and RG-consistency. Most
of our findings can be generalized to QFTs in higher dimensions.

The zero-dimensional O(N) model
We study a zero-dimensional QFT ofN real scalars with expectation values

〈(~φ 2)n〉 =
2n
∫∞

0 dρ ρ
(N−2)

2 ρn e−U(ρ)∫∞
0 dρ ρ

(N−2)
2 e−U(ρ)

, ρ = 1
2
~φ 2 ,

with the O(N) invariant ρ and self-interaction potential U(ρ). All non-
vanishing 1PI-correlation functions Γ(2n) can be expressed in terms of
〈(~φ 2)m〉 with 0 ≤ m ≤ n, cf. Ref. [4].

FRG and numerical fluid dynamics

The RG flow eq. of the zero-dimensional O(N) model
In the Wetterich-Ellwanger-Morris formulation the Renormalization Group
(RG) flow of the O(N) model is described by the exact RG equation,

∂tΓ̄t[~ϕ ] = tr
[(1

2 ∂tRt
) (

Γ̄
(2)
t [~ϕ ] + Rt

)−1
]
,

where ~ϕ = (σ, ~π ) denotes the O(N)-vector of pions and the radial sigma
mode. In 0 + 0 spacetime dimensions the ERG equation is exact (no trun-
cation needed) and the most general effective average action is given by a
scale dependent local potential Γ̄t[~ϕ ] = U(t, ~ϕ ). The corresponding exact
partial differential equation reads

∂tU(t, σ) =
(N − 1) 1

2 ∂tr(t)

r(t) + 1
σ ∂σU(t, σ)

+
1
2 ∂tr(t)

r(t) + ∂2
σU(t, σ)

=

~π

+

σ

,

where r(t) = Λ e−t denotes the regulator with the UV initial scale Λ and
t ∈ [0,∞) positive RG time (note the sign convention).

Numerical methods for flow equations
The above flow equation can be reformulated as a non-linear partial differ-
ential equation in RG time t and field space σ for its derivative u(t, σ) =
∂σU(t, σ). This PDE is an advection-diffusion equation [3, 1], where the
field space x ≡ σ plays the role of an effective spatial domain,

∂tu(t, x) + ∂xF [t, x, u(t, x)]︸ ︷︷ ︸
~π ∼ advection

= ∂xQ[t, ∂xu(t, x)]︸ ︷︷ ︸
σ ∼ diffusion

,

The formulation as a conservation equation strongly suggests the use of
established discretization schemes from numerical fluid dynamics for the
numerical solution. For its robustness and relative simplicity we decided to
use a finite volume method – the Kurganov-Tadmor central scheme [2].
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Figure 1: The plots show the RG flow of the effective potential U(t, σ) (upper panels)
and its derivative u(t, σ) = ∂σU(t, σ) (lower panels) for the zero-dimensional O(N = 4)-
model. In the left column we study the flow of a φ6-potential with a local minimum in the
UV. In the right column we consider a φ4 model with a negative mass term.
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Figure 2: The plots show the relative errors of selected 1PI-correlation functions Γ(2n) in
the IR for the O(N = 4)-model with the quartic potential and negative mass term from
Fig. 1 over spatial resolution ∆x (left panel) and UV inital scale Λ (right panel).

The FRG Taylor expansion
Zero-dimensional models can be used to test truncation schemes in FRG. A
common truncation scheme for the effective potential is the Taylor/vertex
expansion,

Γ̄t[%] =

m∑
n=0

Γ̄(2n)(t)

(2n− 1)!!

%n

n!
. % ≡ 1

2 ~ϕ
2 ,

where the RG flow is calculated on a finite set of m ODEs for the vertices
Γ̄(2n)(t). For the zero dimensional O(N) model the applicability of the
FRG Taylor/vertex expansion of the potential is very limited: it is not ap-
plicable to non-analytic potentials and fails to converge for non-convex
analytic UV potentials, e.g., φ4 and φ6 potentials.
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Figure 3: Relative errors of Γ(2n) in the IR for n = 1, 2, 3 and O(N = 4), which were
calculated via the RG flow of the FRG Taylor (vertex) expansion to order m = 2ntrunc.
As initial condition we use the same φ4-potential as in Fig. 1 with negative mass term (left
panel) or positive mass term (right panel).

Entropy production and irreversibility of RG flows
The formulation of FRG flow equations as advection diffusion equations
naturally leads to a notion of (numerical) entropy directly related to irre-
versibility of RG flows [1].
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Figure 4: The plots show the RG flow of the effective potential U(t, σ) (left panel) and the
corresponding entropy production (right panel) for the zero-dimensionalO(N = 1)-model
for a φ4-potential with negative mass term.

Finite vs. infinite N –
shocks and rarefaction waves in RG flows

A study of theO(N) model within the FRG setup reveals fundamental qual-
itative differences between RG flows at finite and infinite N . The absence
of diffusive contributions at infinite N allows for non-smooth and non-
convex rescaled potentials in the IR, which is a violation of the Mermin-
Wagner theorem. The underlying dynamics of the RG flow can be under-
stood using established concepts for non-linear advection equations like the
notions of shocks and rarefaction waves [3, 1].
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Figure 5: The plots show RG flows of the derivative v(t, x) ≡ ∂xV (t, x) of a rescaled
(x 7→ x/

√
N and U(t, x) 7→ V (t, x) ≡ U(t, x)/

√
N ) potential V (t, x) for a family of spe-

cific piecewise quadratic UV initial conditions V (t = 0, x). At infiniteN (left panel) small
changes of the UV initial condition lead to distinct results in the IR due to interactions of
shock and rarefaction waves. At finite N = 32 (right panel) diffusive contributions of the
σ-mode lead to a qualitatively distinct dynamic compared to the flow in the limit N →∞.

Summary
• RG flows in the LPA are advection-diffusion(-sink) equa-

tions.

• RG flows produce (numerical) entropy directly related to the
irreversibility of RG transformations, which is hard coded in
the diffusive character of the flow equations.

• RG flows can involve shock and rarefaction waves – espe-
cially at large or infinite N .

• The non-linear diffusion in field space stemming from the ra-
dial σ-mode is essential to obtain convex potentials in the IR.
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